May 1987 Report No. STAN-CS-87-1156

0O R

PB96-151584

The Dynamic Tree Expression Problem

by

Ernst W. Mayr

19970423 211

Department of Computer Science

Stanford University
Stanford, CA 94305

prIc QUALITY TREPECTED

The Dynamic Tree Expression Problem

Ernst W. Mayr
Stanford University

May 2, 1987

Abstract

We present a uniform method for obtaining efficient parallel algorithms for a rather
large class of problems. The method is based on a logic programming model, and it
derives its efficiency from fast parallel routines for the evaluation of expression trees.

This work was supported in part by a grant from the AT&T Foundation, ONR contract N00014-85-C-
0731, and NSF grant DCR-8351757.

1 Introduction

Computational complexity theory tries to classify problems according to the amount of
computational resources needed for their solution. In this sense, the goal of complexity
theory is a refinement of the basic distinction between decidable (solvable, recursive)
and undecidable (unsolvable, non-recursive) problems. There are basically three types
of results: (i) algorithms or upper bounds showing that a certain problem can indeed
be solved using a certain amount of resources; (ii) lower bounds establishing that some
specified number of resources is insufficient for the problem to be solved; and (iii) reductions
of one problem to another, showing that the first problem is essentially no harder than the
second. Complexity classes are collections of all those problems solvable within a specific
bound, and complete problems in a complexity class are distinguished problems such that
every other problem in the class is efficiently reducible to them. In this sense, they are
hardest problems in the class.

A very important goal of computational complexity theory is to characterize which
problems are feasible, i.e. solvable efficiently in an intuitive sense. For (standard) sequential
computation, the class P of those problems solvable in polynomial time has become
accepted as the “right” class to represent feasibility. For parallel computation, on a wide
number of machine models (idealized and realistic), the class N'C is considered to play the
same role. It is the class of problems solvable (in the PRAM model, discussed below) in
time polylogarithmic in the size of the input while using a number of processing elements
polynomial in the input size.

In this paper, we show an interesting relationship between efficient parallel computation
and the existence of reasonably sized proof trees. While the reader may feel reminded
of the well-known characterization of the class NP as those problems permitting short
(polynomial length) proofs of solutions, proof trees are considerably more restricted in the
sense that if some intermediate fact is reused the size of its (sub) proof tree is counted with
the appropriate multiplicity. Drawing on, and generalizing, work reported in [14], [18], and
[21], we give a very general scheme to obtain efficient parallel algorithms for many different
problems in a way that abstracts from details of the underlying parallel architecture and
the necessary synchronization and scheduling.

The remainder of the paper is organized as follows. In the next section, we discuss a
few techniques for parallel algorithm design appearing in the literature. Then we introduce
our new technique, the dynamic tree expression problem or DTEP, and present some of
its applications and extensions. In particular, we show an adaptation of the basic DTEP
paradigm to the evaluation of straightline programs computing polynomials. The final
section summarizes our results and mentions some open problems.

2 Techniques for Parallel Algorithm Design

General techniques for the design of efficient parallel algorithms are hard to come by. To a
large degree, this is due to the fact that there are so many vastly different parallel machine
architectures around, and no compilers between the programmers and the machines that

1

could provide a uniform interface to the former. Obviously, this is a situation quite different
from sequential computation. We may even ask ourselves why we should be looking
for such a compiler, or whether parallel algorithms shouldn’t be developped for specific
architectures in the first place. Even more so, we might ask whether parallelism is any good
for solving problems in general, or whether there are just a few selected, and highly tuned,
applications that could benefit from heavy parallelism. We believe that there is a large
number of problems and applications out there which should be parallelized individually,
designing architectures permitting the highest speedup for these applications. There is
also a large class of applications whose data structures and flow of control are extremely
regular and can easily be mapped onto appropriate parallel machine architectures, like
systolic arrays or n-dimensional hypercubes. It is our impression, however, that many
other problems, particularly in Artificial Intelligence, exhibit the same specifications (with
respect to parallelization) as we would expect from general purpose parallel computation.
It is the interest in these, and other, applications that makes us convinced that general
purpose parallelism is relevant, and that in fact it carries immense potential for areas of
general importance.

The design of parallel algorithms may be guided by several, sometimes conflicting, goals.
The first, and maybe most obvious, goal in using parallel machines may be to obtain fast, or
even the fastest possible, response times. Such an objective will be particularly important
in security sensitive applications, like warning or monitoring systems; weather forecasters
also seem to be interested in this particular aspect of parallel computation. Another option
seems to worry about the marginal cost factor: how much real computational power do we
gain by adding one (or k) additional processors to the system? While optimal speedup can
be achieved over a certain range of execution times (depending on the problem), fastest
execution times may be obtained, for certain problems, only by using a very large number
of parallel processors, thus decreasing, in effect, the actual speed-up.

Another consideration is what could be termed the Law of Small Numbers. Many of the
very fast parallel algorithms have running times which are some power of the logarithm
of the input size n, like O(log®n). If we compare this running time with one given by,
say, O(+/n), and assume that the constant factor is 1 in both cases for simplicity, we get
that the polylogarithmic algorithm is actually slower than the polynomial algorithm for n
greater than 2 and less than 65, 536.

2.1 Parallel Machine Models

We shall base most of our discussions onto a theoretical machine model for parallel
computation called the Parallel Random Access Machine, or PRAM [4]. This machine
model has the following features. There is an unbounded number of identical Random
Access Machines (or RAM’s), and an unbounded number of global memory cells, each
capable of holding an arbitrarily big integer. The processors work synchronously, controlled
by a global clock. Different processors can execute different instructions. Each processor
can access (read or write) any memory cell in one step. Our model also allows that
more than one processor read the same memory cell in one step (concurrent read), but

it disallows concurrent writes to the same memory cell. For definiteness, we assume that
all reads of global memory cells in a step take place before all writes (resolving read/write
conflicts).

Most of our algorithms actually do not use concurrent reads, and can be run on a
somewhat weaker machine model in which concurrent reads are forbidden. In any case,
algorithms in our model can always be simulated on this weaker model with a very small
slowdown.

The shared memory feature of the PRAM model, allowing unbounded access to memory
in a single step, is somewhat idealistic. A more realistic machine model consists of a
network of (identical) processors with memory modules attached to them. The processors
are connected via point-to-point communication channels. Each processor can directly
access only cells in its own memory module, and it has to send messages to other processors
in order to access data in their modules. To respect technological constraints, the number
of channels per processor is usually bounded or a very slowly growing function of the
number of processors. Examples for such networks of processors are the Hypercube [20],
the Cube-Connected-Cycles network [17], or the Ultracomputer (RP3) [15], [19].

2.2 Parallel Complexity Measures

The two most important parameters determining the computational complexity of
algorithms in the PRAM model are the time requirements and the number of processors
used by the algorithm. Both are usually expressed as functions of the input size n.
Note that another factor determining the practical efficiency of a parallel algorithm —
its communication overhead — is of no importance in the PRAM model. As in sequential
computation, and its associated complexity theory, complexity classes are defined based
on bounds of the available resources, like time or number of processors. One such class
has become particularly important in the theoretical study of parallel algorithms and the
inherent limits of parallelism. This class is called N'C and is defined as the class of problems
solvable on a PRAM in time polylogarithmic (polylog for short) in the size of the input
while using a number of processors polynomial in the input size. Thus, a problem is in
NC if there is a PRAM algorithm and some constant ¢ > 0 such that the algorithm runs
in time O(log®n) and uses O(n°) processors on instances of size n.

The resource constraints for N'C reflect two goals to be achieved by parallelism:
a (poly)logarithmic running time represents an “exponential” speedup over sequential
computation (requiring at least linear time); and the restriction on the number of processors
limits the required hardware to be “reasonable”. Of course, both these considerations have
to be taken in the asymptotic sense, and are thus of a rather theoretical nature (see the
Law of Small Numbers above).

However, the class NC is robust in the sense that it does not change with small
modifications in the underlying machine model. In fact, it is the same for the PRAM
model(s) outlined above as well as the Hypercube or Ultracomputer architecture. It was
originally defined for boolean circuits in [16]. Membership in N'C has become (almost)
synonymous with “efficiently parallelizable”.

Real parallel machines have, of course, a fixed number of processors. Even though
some parallel algorithm may have been designed for a (theoretical) parallel machine with
a number of processors depending on the input size, the following theorem states that it
is always possible to reduce, without undue penalty, the number of processors:

Simulation Theorem: An algorithm running in time T'(n) on a p-processor PRAM, can
be simulated on a p’-processor PRAM, p' < p, in time O([p/p"] T(n)). O

If an algorithm runs in time T(n) on a sequential architecture, and we port it to a
parallel architecture with p processors we cannot expect a parallel running time better
than Q(T(n)/p) — unless our machine models exhibit some strange quirks which are of
no concern here. Conversely, we say that a problem of sequential time complexity T(n)
exhibits optimal speedup if its parallel time complexity on a PRAM using p processors is
in fact O(T(n)/p), for p in an appropriate range.

2.3 Parallel Programming Techniques

Only relatively few parallel programming schemes and/or techniques can be found in the
literature. This is due in part to the fact that there is universal parallel architecture,
and no commonly accepted way of hiding architectural details from parallel programs.
Nonetheless, the PRAM model can, to a certain degree, play this role. Certain operations
have been identified to be fundamental or important for a large number of parallel
applications, and efficient algorithms have been developed for them. Examples are the
parallel prefix computation [10], census functions [11], (funnelled) pipelines (7], parallel
tree evaluation [13], [14], and sorting [2]. As an illustration, we state a procedural
implementation of an algorithm for the parallel prefix problem, in a PASCAL like notation.
Given an array s,,...,S, of elements from some arbitrary domain, and a binary operator
o over that domain, this procedure computes all partial “sums” s;0---8;, for¢ =1,...,n.

procedure census-function(n, s, result, o);
int n; gmemptr s, result; binop o;
co 7 is the number of elements in the input array starting at position s in global memory; result
is the index of the global memory cell receiving the result; o is an associative binary operator oc
begin '

local typeof.S: save, int: mask, myindex

if PID < n then

mask := 1; myindez := s + PID; save := Mpyindes;
~while mask < n do

if (PID & (2 * mask — 1) = 0) and PID + mask < n then

Mmyindez = myindez © Mmyindcz'+maak
fi;
mask := 2 x mask
od;

if PID = 0 then M,.,..; := M, fi;

if myindez # result then M, inge, 1= save fi
fi;
return
end census_function.

This algorithm takes, on a PRAM, O(logn) steps and uses n processors. As such,
its speedup is suboptimal since the straightforward sequential algorithm runs in linear
time. However, by grouping the input elements into contiguous groups of size [logn] (the
last group may be smaller), we can solve the parallel prefix problem using just [n/logn]
processors. Using one processor for every group, we first compute the prefix “sums” within
every group. Then we run the above algorithm with the group prefix “sums” as input,
and finally we extend the partial sums over the groups inside the groups, again using
one processor per group. The time for this modified algorithm is still O(logn) (with a
somewhat larger constant).

The parallel prefix problem has many applications. It occurs as a subproblem in
algorithms for ranking, linearization of lists, graph traversals, processor scheduling, and
others.

In the next section, we discuss another fundamental algorithm for parallel computation.

3 The Dynamic Tree Expression Problem

In [18], Alternating Turing machines using logarithmic space and a polynomial size
computation tree are studied. These machines can be thought of as solving a recognition
problem by guessing a proof tree and recursively verifying it. Each internal node in the
proof tree is replaced, in a universal step, by its children in the tree while leave nodes
correspond to axioms which can be verified directly. In every step, the machine is allowed
to use only logarithmic storage (at every node) to record the intermediate derivation step.

We in effect turn the top-down computation of ATM’s as discussed in [18] around into
computations proceeding basically bottom-up, similar to the approach taken in [13], [14],
and [21]. We present a uniform method containing and extending the latter results.

3.1 The Generic Problem

For the general discussion of the Dynamic Tree Expression Problem, we assume that we
are given

i. a set P of N boolean variables, p,,...,pn;
il. a set I of inference rules of the form

bi :—p;Pk OT Dpi :—Dj.
Here, juxtaposition of boolean variables is to be interpreted as logical AND, and
“:;—"is to be read as “if”. In fact, the two types above are Horn clauses with one
or two hypotheses, written in a PROLOG style notation: (p; Apx) = p; and p; = p;,
respectively. We note that the total length of I is polynomial in N.

iii. a distinguished subset Z C P of azioms.

Definition 3.1 Let (P,I,Z) be a system as above. The minimal model for (P,I,Z) is the
minimal subset M C P satisfying the following properties:

(i) the set of azioms, Z, is contained in M;

(i1) whenever the righthand side of an inference rule is satisfied by variables in M, then
the variable on the lefthand side is an element of M:

PPk €M, pi i—pipr €1

= p; € M.
p;EM, p;:—p; €l

We say that (P, I,Z) implies some fact p if the boolean variable p is in the minimal
model M for (P, I, Z). For each such p, there is a derivation or proof tree: This is a (rooted)
tree whose internal vertices have one or two children, and whose vertices are labelled with
elements in P such that these four properties are satisfied:

1. the labels of the leaves are in Z;
2. if a vertex labelled p; has one child, with label p;, then p; : —p; is a rule in I;

3. if a vertex labelled p; has two children, with labels p; and pg, then p; : —p;px is a
rule in [;

4. the label of the root vertex is p.

The Dynamic Tree Ezpression Problem consists in computing the minimal model for
a given system (P, I, Z), or, formulated as a decision problem, in deciding whether, given
(P,I,Z) and some p € P, whether p is in the minimal model for (P, I, Z). The algorithm
below can be used to solve DTEP on a PRAM.

algorithm DTEP(N,P,I,Z);
int N; set of boolean P, Z; set of inference rules I;
co N is the number of boolean variables in P; Z is the subset of P distinguished as axioms; I
is a set of Horn clauses with at most two variables on the righthand side; P is implemented as
an array of boolean variables; the algorithm sets to true exactly those elements of the array P
corresponding to elements in the minimal model oc
begin

array DI[1..N,1..NJ;

co initialization oc

P[i] := true for all p; € Z, else false;

DI[j,i] := true for i = j and all p; : —p; € I, else false;

do ! times co [will be specified below oc
for i € {1,...,N} with P[i] = false do in parallel
if ((P[j] = P[k] = true) A (pi : — p;px € I)) V ((P[j] = true) A (DI[j,i] = true))

6

then P[i] := true

fi;
if (P[k] = true) A (p; :— p;px € I) then DI[j,i] := true fi
od;
DI:=DI-DI
od
end DTEP.

We first remark about the intuition behind the array DI used in the DTEP algorithm.
If entry (i,7) of this array is true then it is known that p; implies p;. This is certainly
true at the beginning of the algorithm, by way of the initialization of DI. Whenever for
an inference rule p; : —p;p; with two antecedents, one of them, say py, is known to be
true, the rule can be simplified to p; : — p;. But this means that p; implies p;, as recorded
in the assignment to DI[j,¢]. Also, the net effect of squaring the matrix DI in the last
step of the outer loop is that chains of implications are shortened. Note that entry (3, j)
of the matrix becomes true through the squaring of the matrix only if there was a chain
of implications from p; to p; before the squaring.

Lemma 3.1 If p; is in the minimal model M, and if there is a derivation tree for p; in
(P,I,Z) of size m then P[i] = true after at most | = 2.41logm iterations of the outer
loop of the DTEP algorithm. P[i] never becomes true for p; ¢ M.

Proof: The proof is by induction on the number of iterations of the main loop. We use
the following induction hypothesis:

At the end of each iteration of the main loop, there is a derivation tree for p;
of size at most 3/4 of the size at the end of the previous iteration, allowing
as inference rules the rules in I and the “direct implications” as given by the
current values of the elements of DI, and as axioms the p; with P[j] currently
true.

This induction hypothesis is trivially satisfied before the first iteration of the loop. For
the r-th iteration, let m = |T| be the size of a derivation tree T for p;, using the current
axioms and derivation rules. We distinguish two cases:

1. T has at least m/4 leaves: since the parallel loop in the DTEP algorithm set
P[k] = true if the children of a vertex labelled p; are all leaves, this case is trivial.

2. Let i be the number of maximal chains in T with k internal vertices, and let b be
the number of leaves of T, both at the start of the loop. A chain in T is part of a
branch with all internal vertices having degree exactly 2. Then we have:

m = 2b—-1+2k-rk;
k>1

m' < b—14) [k/2]ry
k>1

7

1
< b—14+5(kit me)
k>1 k>1
1 1
< b-1+5(m+1-20)+5-2
< -3-m
i

Here, m' is the size of the derivation tree after execution of the loop, using the current
set of axioms and inferences. The first inequality follows since squaring of the matrix DI
halves the length of all chains. The third inequality stems from the observation that in a
tree with b leaves, the number of (maximal) chains can be at most 25 — 1 as can be seen
by assigning each such chain to its lower endpoint.

There is a trivial derivation tree for p; after at most log,;;m < 2.41logm (note that
all logarithms whose base is not mentioned explicitly, are base 2). O

Theorem 1 Let (P,I,Z) be a derivation system with the property that each p in the
minimal model M has a derivation tree of size

< gle' N,
Then there is an NC-algorithm to compute M.

Proof: It follows immediately from the above Lemma that under the stated conditions
the DTEP algorithm runs in polylogarithmic time. More precisely, for the bound on the
size of derivation trees given in the Theorem, the running time of the algorithm is

O(log™** N),

and it uses N3 processors. []

3.2 Applications of DTEP

Longest Common Substrings

As a very simple example of a DTEP application we consider the longest common
substring problem: given two strings a; - a, and by - -+ by, over some alphabet 3, we are
supposed to find a longest common substring a;- - - @iy, = b+ bjsr.

To obtain a DTEP formulation of this problem, we introduce variables p;;; whose
intended meaning is:

pijiis trueif ;- - @iy =bj - bii-1-
Thus, we have the following axioms:
pija iff ai = bj;
8

and these inference rules:

Pijp = Pig[i/21Pi+[1/2),5411/2],11/2)

An easy induction on the length ! of a common substring shows that p; ;; is true in the
minimal model for the above derivation system if and only if the substring of length I
starting at position ¢ in the first string is equal to the substring of the same length at
position j in the second string. A similar induction can be used to show that for every
common substring of length I, there is a derivation tree of size linear in ! in the above
derivation system. These two observations together establish the longest common substring
problem as an instance of DTEP.

Other Applications

It is possible to rephrase a number of other problems as instances of the Dynamic Tree
Ezpression Problem. A few examples are contained in the following list:

e transitive closure in graphs and digraphs

the non-uniform word problem for context-free languages

the circuit value problem for planar monotone circuits

DATALOG programs with the polynomial fringe property

the complexity class ALT(log n, expolylog n); these are the problems recognizable by
log-space bounded Alternating Turing machines with a bound of 21°¢°" for the size
of their computation tree, for some constant ¢ > 0.

For the DATALOG example, we refer the interested reader to [21]. We briefly discuss
the third and the last example in the above list.

The Planar Monotone Circuit Value Problem

A circuit is a directed acyclic graph (dag). Its vertices are called gates, and the
arcs correspond to wires going from outputs of gates to inputs. The gates are either
input/output gates connecting the circuit to its environment, or they are combinational
mapping the values on the input wires of the gate to values on the output wires, according
to the function represented by the gate. In a monotone circuit, all combinational gates
are AND or OR gates. Therefore, the output of the circuit, as a function of the inputs, is
a monotone function. A planar circuit is a circuit whose dag can be laid out in the plane
without any wires crossing one another, and with the inputs and output(s) of the circuit
on the outer face.

We assume that circuits are given as follows. The description of a circuit with n gates
is a sequence fg,..., fn—1. Each gate §; is

1. 0-INPUT or 1-INPUT (also abbreviated as 0 and 1, respectively); or
9

2. AND(B;, Bx), OR(B;, Bi), or NOT(B;), where j, k < i;in this case, the gate computes
the logical function indicated by its name, with the values on the input wires to the
gate as arguments, and puts this function value on all of the gate’s output wires.

3. The output wire of B, carries the output of the circuit.

The circuit value problem (CVP) consists in computing the output of a circuit, given
its description. It is well known that CVP is complete for 7 under log-space reductions,
and hence is a “hardest” problem for the class of polynomial time algorithms [9]. Even if
we restrict ourselves to monotone circuits (allowing only AND and OR gates), or to planar
circuits, the corresponding restricted CVP remains P-complete [5]. However, the circuit
value problem can be solved efficiently in parallel for circuits which are monotone and
planar [3], [6]. While the original solutions were indirect and technically quite involved,
the DTEP paradigm gives us a relatively simple approach.

For ease of presentation, we assume that the description fy,...,8n — 1) of a planar
monotone circuit satisfies the following additional properties:

e The circuit is arranged in layers; the first layer is constituted by the inputs to the
circuit; the last layer consists of the output of the circuit; for every wire in the circuit,
there is a (directed) path from an input to the output of the circuit, containing that
wire.

o All wires run between adjacent layers, without crossing one another.
e All gates on even layers are AND gates with at least one input.

¢ All gates on odd layers (except the first) are OR gates.

These restrictions are not essential. Given a general type description of a circuit,
there are well-known N C-algorithms to test whether it represents a monotone and planar
circuit, and to transform it into a description of a functionally equivalent circuit satisfying
the restrictions listed above.

To obtain a DTEP formulation, it is helpful to look at intervals of gates. Formally,
let the triple (I,,7) denote the interval from the ith through the jth gate (in the order
in which they appear in the circuit description) on the Ith layer of the circuit. We shall
introduce boolean variables p(l,,j) with the intended meaning

p14; is true iff the output of every gate in (I,1,5) is true.

We simply observe that an interval of AND-gates has outputs all true if and only if all
inputs to this interval of gates are true, and that these inputs come from an interval
of gates on the next lower layer. For intervals of OR-gates, the situation is a bit more
complicated since in order to obtain a true output from an OR-gate, only one of its inputs
needs to be true. We must therefore be able to break intervals of true OR-gates down
into smaller intervals which are true because a contiguous interval of gates on the next

10

lower layer is true. Because wires don’t cross in a planar layout, such a partition is always
possible.

More formally, the inference rules for a given instance of the planar monotone circuit
value problem are:

L. pii; = pi-1,0,j for every (nonempty) interval of AND-gates; here, i’ denotes the first
input of the first gate, and j' the last input of the last gate in the interval;

2. Puii P — PLikPlk+1,js foralli <k < j; and

3. Puij 1= Pi-1,,, for all layers [of OR-gates and all pairs (7', ;') where 7' < j’ and S
is an input of §;, and B; is an input of f;.

The axioms are given by all intervals of true inputs to the circuit.

It is easy to see that the total length of the representation for the axioms and for all
inference rules is polynomial in n. A straightforward induction, using the planarity of the
circuit as outlined above, also shows that p;;; is true in the minimal model if and only if
the ith gate on layer [has output true in the circuit.

Suppose p;;; is in the minimal model. To see that there is a linear size derivation tree
for pi;,; we consider the sub-circuit consisting of all gates from which a gate in (1,3, j) is
reachable. Whenever we use an inference rule of type 1 or of type 3 in a derivation tree
for pi,; we charge the vertex in the derivation tree (corresponding to the left-hand side of
the rule) to the interval (1,7, 5). We observe that we need to use an inference rule of type
2 for an OR-gate on some layer I’ only if the interval of gates on layer I' — 1 feeding into
this interval contains more than one maximal sub-interval of true gates. In this case, we
can split the interval (7', 4,) into sub-intervals (I’,,k) and (I, k + 1, §) in such a way that
one of the inputs to gate k on layer I’ is false. We charge the left-hand side of the type 2
inference rule to the interval of false gates on layer I — 1 containing this input. Because
of the planarity of the circuit, rules used to derive py;x and D k41,5 are charged to disjoint
sets of intervals. Therefore, the number of maximal intervals of gates with the same output
value is an upper bound on the size of a smallest derivation tree for any element in the
minimal model. We conclude

Theorem 2 There is an NC algorithm for the planar monotone circuit value problem.

g

Tree Size Bounded Alternating Turing Machines

Alternating Turing Machines are a generalization of standard (nondeterministic) Turing
Machines [8], [1]. They are interesting because their time complexity classes closely
correspond to (standard) space complexity classes, and because their computations directly
correspond to first order formulas in prenex form with alternating quantifiers.

For an informal description of Alternating Turing Machines (ATM’s), we assume that
the reader is familiar with the concept of standard (nondeterministic) Turing machines

11

[8]. An ATM consists of a (read-only) input tape and some number of work or scratch
tapes, as in the standard model, as well as a finite control. The states of the finite control,
however, are partitioned into normal, ezistential, and universal states. Existential and
universal states each have two successor states. Normal states can be accepting, rejecting,
or non-final. An instantaneous description or id of an ATM consists of a string giving the
state of the finite control of the ATM, the position of the read head on its input tape, and
head positions on and contents of the work tapes. It should be clear that, given the input
to the machine, an id completely determines the state of the machine.

A computation of an ATM can be viewed as follows. In any state, the machine performs
whatever action is prescribed by the state it is in. If the state is a normal non-final state, the
finite control then simply goes to its unique successor state. Accepting or rejecting states
have no successors. If the state is existential or universal, the machine clones itself into
as many copies as there are successor states, with each clone starting with an id identical
to that of the cloning id, except that the state of the cloning id is replaced by that of the
successor state. The cloning machine disappears. It is best to view the computation of an
ATM as a tree, whose nodes correspond to id’s of the computation, in such a way that
children of a node in the tree represent successor id’s.

Given this interpretation, each computation of an ATM can be mapped into a (binary)
tree. This tree need not necessarily be finite, since there can be non-terminating branches
of the computation. To define whether an ATM accepts, or, dually, rejects some input,
we look at the corresponding computation tree as defined above. A leaf in this tree is
called accepting iff the state in its id is accepting. An internal node whose id contains a
normal state is accepting iff its (unique) descendent in the tree is accepting. An internal
node with an existential state is accepting iff at least one of its immediate descendents
is accepting, and a node with a universal state iff all of its immediate descendents are
accepting. An id of the ATM is called accepting if it is attached to an accepting node in
the computation tree. An ATM is said to accept its input if and only if the root of the
corresponding computation tree is accepting by the above definition, or, equivalently, if
the initial configuration of the machine is accepting.

To cast ATM computations into the DTEP framework we note that if the space used
by the ATM on its worktapes is bounded by O(logn) then the number of distinct id’s
for the machine is bounded by some polynomial in n. Assume that idy,...,td, is an
(efficient) enumeration of these id’s. Our instance of DTEP will have boolean variables p;,
for ¢ = 0,...,m, with the intended meaning

p; is true iff id; is accepting.

The axioms are given by those id’s containing accepting states, and we will have inference
rules

o p; :—p;px iff p; contains a universal state with two successor states, and id; and id;
are the two immediate successor id’s of :d;; and

e p; :—p; in all other cases where id; is a (the) immediate successor id of id;.

12

Ty = T1+2Ty Ts = T4X Ty

Teg = Ts X Ty T7 = ITh XTI
Trg = T3 X7 Tg = TegXTg
Tig = T4 X ZTg

Figure 1: Straightline program for polynomial ((z1 + x2)® + z2z3)(z; + z3)

A straightforward induction shows that there is an exact correspondence between
derivation trees for the p; corresponding to the initial id of the ATM, and certain subtrees
of the ATM’s computation tree. These subtrees are obtained by removing, for each node
whose id contains an existential state, all but one of the children of that node, together
with their subtrees. Also, the leftover child has to be an accepting node.

Since the computation tree of the ATM is of polynomial size, so is any derivation tree
obtained by the above construction. This concludes the (informal) proof for

Theorem 3 Problems in the complezity class ALT(logn, expolylog n) are instances of
the Dynamic Tree Ezpression Problem. In particular, they are members of NC.

g

4 Application to Algebraic Straightline Programs

Straightline programs consist of a sequence of assignment statements executed in order.
Each variable referenced in a statement is either an input variable, or it has been assigned
a value in an earlier assignment. In algebraic straightline programs, the expressions on
the righthand side of the assignment are basic unary or binary expressions involving
the arithmetic operators +, —, X, and /, as well as constants and input or computed
variables. Each non-input variable is assigned a value in exactly one statement in the
straightline program. In what follows, we are only concerned with straightline programs
containing the operators 4+, —, and x. Any such straightline program computes some
(multivariate) polynomial of the input variables. Conversely, every multivariate polynomial
can be expressed as an algebraic straightline program.

A straightline program corresponds, in a natural way, to a directed acyclic graph or
dag. In this dag, the vertices correspond to the assignment statements, the sources of
the dag (i.e., vertices of indegree zero) correspond to the input variables of the program,
and arcs signify the use of variables defined in one statement by some other statement.
We define the size of a straightline program to be its number of assignment statements.
Figure 1 shows a straightline program for the polynomial ((z; + z2)® + z2z3)(z; + z2) with
indeterminates z;, s, and z3, and Figure 2 gives the corresponding computation dag. In
Figure 2, all edges represent arcs directed upward.

We assume without loss of generality that the operation in the last assignment in a
straightline program is a multiplication.

13

-
/
X X
X

) I T3

Figure 2: Computation dag for straightline program in Figure 1

To make straightline programs more uniform and easier to deal with, we first wish to

transform them into an (algebraically equivalent) sequence of bilinear forms of the form
yi = (3 cPy;) - > c$v))-
1<t i<

Again, the y; are either input variables or assigned a value in an earlier assignment. In
fact, each non-input variable y; is in exact correspondence with some z; in the original
straightline program which is the result of a multiplication operation. Assuming that
¢ = k; for the input variables, the coefficients cg-) (resp., cg)) give the number of distinct
paths from zy; to the left (resp., right) multiplicand of zj, in the dag belonging to the
original straightline program. These coefficients can be obtained in a straightforward
way by repeatedly squaring a matrix A obtained as follows. We first construct, from
the computation dag for the straightline program, an auxiliary dag by splitting every
multiplication node v into three nodes, v',v?, and v® v! receives the arc from the left
multiplicand, v? the arc from the right multiplicand. All arcs originally leaving v are
reattached to v3. In the resulting digraph, the original input nodes and the type 3 nodes
are sources, the type 1 and type 2 nodes are the sinks. The matrix A mentioned above
is the adjacency matrix of this digraph, after we attach a loop (directed cycle of length
one) to every sink. Further details are left to the reader. The coefficients in the bilinear
forms can be computed on a PRAM in time O(log® n), using M(n) processors. Here, n is
the size of the original straightline program, and M(n) < n® is the number of processors
required to perform matrix multiplication in time O(logn).

14

Figure 3: Graph of bilinear straightline program

Figure 3 shows a graphical representation of the transformed “bilinear straightline
program” for the straightline program resp. computation dag given in Figures 1 and 2.
Each bilinear form is represented by a flat ‘V’, with the terms in the first (second) factor
given by the arcs ending in the left (right) arm of the ‘V’. The coefficient belonging to a
term is attached to the arc unless it is one or zero. In the latter case, no arc is drawn at
all. '

For the digraph B of a bilinear straightline program, we can define operations analogous
to the DTEP operations. The boolean variables are replaced by pairs (¢;, v;) for every node
¢ in B. The first element, c;, is a boolean indicating whether the value of the polynomial
corresponding to vertex ¢ has been computed; if ¢; is true then v; holds this value. Initially,
the values of all the input variables are known. We call a node of B a I-node iff it is not
a sink (z.e. a node of outdegree zero) and the value of exactly one of its factors is known
(i.e. the values of all nodes with arcs to the corresponding “leg” have been computed).
All other nodes whose value is still unknown are called 2-nodes.

We also have several matrices describing the arcs in the graph, and the coefficients
attached to them. The set of arcs and coefficients, and consequently the entries in these
matrices, change during the course of the algorithm.

o the (7, 7)th entry of C) contains the coefficient of the arc from the ith node of B to
the left leg of the jth node, for all nodes ¢ and j such that J is a 2-node; the other
entries are zero;

o C) is defined correspondingly for the righthand factors;

15

o the (4,7) entry of the matrix D, for j a 1-node, is the coefficient of the arc from node
1 to node j;

e the matrix C is a projection matrix; all its entries are zero except for those on the
diagonal positions corresponding to 2-nodes.

Each phase of the adapted DTEP algorithm consists of the following steps:

co one phase of adapted DTEP oc
for all ; with ¢; = false and both factors known do in parallel
compute v; and set ¢; = true;
for all nodes 7 which just became new 1-nodes do in parallel
multiply the coefficients of all arcs entering the unknown “leg” by the other, known
factor;
update all matrices so as to reflect the changes in the sets of 1-nodes and 2-nodes;
cW:.=(C+D)-cW; ¢ :=(C+D)- c;
D:=(C+D)-D;
update B to correspond to the newly computed matrices;
co end of phase oc

It is straightforward to verify that the bilinear program given by the modified graph
after execution of one phase computes the same values as the original bilinear program.
Also, one phase can be executed on a PRAM in time O(log n) employing M (n) processors,
where M(n) < n® is the number of processors required to multiply two n X n matrices in
O(logn) parallel steps.

To obtain a bound on the required number of phases, it is not sufficient to unfold
the dag B into a tree and then use our general results about DTEP since there are easy
examples where the unfolded tree is of exponential size. However, the following worst-term
argument works.

Define, for each node in the graph of a bilinear straightline program, its formal degree
inductively as follows: The original input variables have formal degree 1, and each other
variable has a formal degree equal to the sum of the formal degrees of its two factors. Here,
the formal degree of a factor is defined to be the maximum of the formal degrees of all its
terms.

For every factor of a non-input variable y; in a bilinear straightline program, we define
a worst term, derived from the execution of the above algorithm: determine, for the
corresponding “leg” of the node i in the sequence of graphs generated by the algorithm,
which other node j with an arc to that leg is the latest to have its value computed. If ;
has an arc to ¢ in the first graph of the sequence, y; becomes the worst term for the factor
of y; under consideration, and we distinguish the arc from j to ¢. Otherwise, distinguish
any path from j to the appropriate leg of i in the first graph of the sequence. Every node
on this path corresponds to the worst term of the appropriate factor of the next node on
the path. '

Consider the subgraph B’ induced by the distinguished arcs. Assume without loss of
generality that B’ has only one sink. Clearly, B’ computes some monomial. If we unfold

16

B’ into a tree T then T’s size is exactly twice the formal degree of this monomial, minus
one. The reason is that all non-leaf nodes in T are multiplication nodes, with exactly one
term per factor.

A simple induction shows that the adapted DTEP algorithm computes the values of
nodes in T in exactly the same phases as it computes them when run on B, the full graph.
The analysis of the general DTEP algorithm applies to the adapted algorithm, executed
on T. We obtain that the adapted DTEP algorithm computes the value of each y; in
a number of phases proportional to the logarithm of the formal degree of y;. Since the
initial transformation to a bilinear straightline program is basically a transitive closure
computation, we obtain the

Theorem 4 Suppose S i3 a straightline program containing n variables and computing a
polynomial of formal degree d. The adapted DTEP algorithms computes the value of the
polynomial given by S, at a specified point, in time O(logn(logn + logd)) using M(n)
processors on a unit cost PRAM.

O

Thus, polynomials given by straightline programs can be evaluated by an A'C algorithm
as long as their formal degree is expolylog in n. This result was originally obtained in [13].
Our presentation is intended to give evidence for the wide applicability of the DTEP
paradigm, and maybe to supply a somewhat simpler, less technical proof.

5 Conclusion

The DTEP paradigm establishes an interesting connection between fast parallel computa-
tion and small proof or derivation trees. In more technical terms, the instances of DTEP in
NC are characterized as ALT(logn, expolylogn) or the set of problems recognizable by log
space bounded alternating Turing machines with “expolylogarithmically” bounded compu-
tation trees. DTEP is not necessarily intended to provide optimal parallel algorithms for a
given problem. Instead, its primary function is to provide a convenient, high level way for
the specification of an efficient and highly portable parallel algorithm. The input to DTEP
is in a format very similar to logic programs, rather declarative than procedural, and thus
allows to abstract away many peculiarities of any underlying parallel architecture.

The DTEP algorithm can be efficiently implemented on various “real world” parallel
architectures, like binary hypercubes, butterfly networks, shuffle-exchange based networks,
and multi-dimensional meshes of trees [12]. The algorithm can also be tailored and made
more efficient (both in terms of time and number of processors) for more restricted instances
of the dynamic tree expression problem. Some of these optimizations are also discussed in
[12].

We have also shown how to extend the basic DTEP paradigm to problems over algebraic
domains, in particular the parallel evaluation of algebraic computation dags, or straightline
programs. Further interesting extensions include the possibility of handling non Horn
clauses in the basic formulation of DTEP, along the lines discussed in [21].

17

Another interesting line of research is the characterization of more classes of problems
for DTEP in independent terms, in particular the derivation of conditions for the existence
of small proof trees.

References

[1] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. J.ACM, 28(1):114-133,
1981.

[2] R. Cole. Parallel merge sort. In Proceedings of the 27th Ann. IEEE Symposium on
Foundations of Computer Science (Toronto, Canada), pages 511-516, 1986.

[3] P. Dymond. Simultaneous resource bounds and parallel computation. Ph.D. Thesis,
Department of Computer Science, University of Toronto, 1980.

[4] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of
the 10th Ann. ACM Symposium on Theory of Computing (San Diego, CA), pages 114~
118, 1978.

[5] L. Goldschlager. The monotone and planar circuit value problems are log-space

complete for P. SIGACT News, 9(2):25-29, 1977.

[6] L. Goldschlager. A space efficient algorithm for the monotone planar circuit value
problem. Information Processing Letters, 10(1):25-27, 1980.

[7] P. Hochschild, E. Mayr, and A. Siegel. Techniques for solving graph problems
in parallel environments. In Proceedings of the 24th Ann. IEEE Symposium on
Foundations of Computer Science (Tucson, AZ), pages 351-359, 1983.

[8] J. Hopcroft and J. Ullman. Introduction to Automate Theory, Languages, and
Computation. Addison-Wesley, 1979.

[9] R. Ladner. The circuit value problem is log-space complete for P. SIGACT News,
7(1):583-590, 1975.

[10] R. Ladner and M. Fischer. Parallel prefix computation. J.ACM, 27(4):831-838, 1980.

[11] R. Lipton and J. Valdes. Census functions: An approach to VLSI upper bounds
(preliminary version). In Proceedings of the 22nd Ann. IEEE Symposium on
Foundations of Computer Science (Nashville, TN), pages 13-22, 1981.

[12] E. Mayr and G. Plaxton. Network Implementations of the DTEP Algorithm.
Technical Report, Department of Computer Science, Stanford University, 1987.

[13] G. Miller, V. Ramachandran, and E. Kaltofen. Efficient parallel evaluation of straight-
line code and arithmetic circuits. Technical Report TR-86-211, Computer Science
Dept., USC, 1986.

18

[14] G. Miller and J. Reif. Parallel tree contraction and its application. In Proceedings
of the 26th Ann. IEEE Symposium on Foundations of Computer Science (Portland,
OR), pages 478-489, 1985.

[15] G. Pfister. The architecture of the IBM research parallel processor prototype (RPS).
Technical Report RC 11210 Computer Science, IBM Yorktown Heights, 1985.

[16] N. Pippenger. On simultaneous resource bounds. In Proceedings of the 20th Ann.
IEEE Symposium on Foundations of Computer Science (San Juan, PR), pages 307-
311, 1979.

[17] F. Preparata and J. Vuillemin. The cube-connected-cycles: A versatile network
for parallel computation. In Proceedings of the 20th Ann. IEEE Symposium on
Foundations of Computer Science (San Juan, PR), pages 140-147, 1979.

[18] W. Ruzzo. Tree-size bounded alternation. In Proceedings of the 11th Ann. ACM
Symposium on Theory of Computing (Atlanta, GA), pages 352-359, 1979.

(19] J. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and
Systems, 2(4):484-521, 1980.

[20] C. Seitz. The cosmic cube. CACM, 28(1):22-33, 1985.

[21] J. Ullman and A. van Gelder. Parallel complexity of logical query programs. In
Proceedings of the 27th Ann. IEEE Symposium on Foundations of Computer Science
(Toronto, Canada), pages 438454, 1986.

